

center frequency of the coupler. The exact role that each of these elements plays in the final, fully compensated configuration is difficult to assess, and no attempt at a detailed analysis has been made.

In summary, a solution to the problem of anisotropy drift in a YIG single crystal gyromagnetic coupler has been achieved through the appropriate orientation of the YIG coupling element. A solution to the external source of instability has been achieved through the use of a magnetic shunt of Carpenter Temperature Compensator. The end product is a well shielded gyromagnetic coupler, tunable from 5.4 to 5.7 Gc, free from anisotropy drift affects with up to 1 watt average power input, and temperature stabilized to less than ± 2 Mc through an ambient change from -20°F to 150°F .

ACKNOWLEDGMENT

The authors wish to thank Drs. G. P. Rodrigue and J. E. Pippin of Sperry Microwave Electronics Company, Research Section, for many valuable suggestions.

J. CLARK
J. BROWN
D. E. TRIBBY
Advance Microwave Techniques Dept.
Sperry Microwave Electronics Co.
Clearwater, Fla.

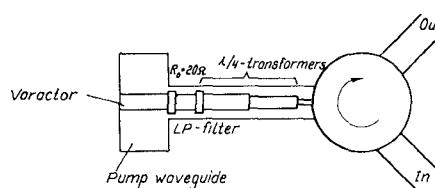


Fig. 1—Configuration of a single-tuned amplifier.



Fig. 2—Double sideband gain as a function of frequency for the single-tuned amplifier.

An S-Band Wide-Band Degenerate Parametric Amplifier*

This communication reports some experimental results for an S-band wide-band degenerate parametric amplifier designed with a method earlier described by the author.¹

We represent the varactor by a nonlinear capacitance in series with a loss resistance R and an inductance L_s and write the pumped capacitance as

$$C = C_0 [1 + 2\alpha \cos \omega_p t]. \quad (1)$$

Then the signal voltage gain G of a degenerate circulator operated amplifier can be written as

$$\left\{ \begin{array}{l} |G| = \frac{1 + |\rho|^2}{2|\rho|} \\ \rho = \frac{Z_s - Z_d}{Z_s + Z_d} \end{array} \right. \quad (2)$$

Z_s is the signal circuit impedance, including varactor reactances, as seen from the varactor end. Z_d is a modified signal-idler coupling impedance

$$\left\{ \begin{array}{l} Z_{d0} = \frac{\alpha}{\omega_{s0}(1 - \alpha^2)C_d} \\ Z_d = \sqrt{Z_{d0}^2 + \frac{R^2}{G_0^2 - 1}} - R \frac{G_0}{\sqrt{G_0^2 - 1}} \end{array} \right. \quad (3)$$

* Received May 24, 1963.

¹ B. T. Henoch, "A new method for designing wide-band parametric amplifiers," IEEE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-11, pp. 62-72; January, 1963.

The wide-band design problem now is reduced to a problem of matching the modified coupling impedance Z_d into the amplifier source impedance R_0 .

The experimental amplifier uses a GaAs varactor with a zero-bias capacitance of 0.5 pf, cutoff frequency 100 kMc and series-resonance frequency 6 kMc. The varactor is mounted in a pump waveguide according to Fig. 1.

The signal frequency is chosen so that the waveguide inductance resonates the varactor and the amplifier source impedance R_0 is chosen to 20 Ω .

The double sideband gain is measured by using a swept frequency generator and a broad-band detector which displays the gain curve on an oscilloscope. The gain vs frequency for the single-tuned amplifier is shown in Fig. 2.

The measured gain curve corresponds to $C_d = 0.5$ pf, $Z_d = 15 \Omega$ and $\alpha = 0.15$. The inductance L_1 in the series resonator is $L_1 = 8.4$ m μ H.

To get a double-tuned wide-band amplifier a parallel resonator is inserted between the series-tuned varactor and the amplifier source impedance R_0 and designed to match Z_d maximally flat into R_0 . The low-pass equivalent of the matching circuit is shown in Fig. 3.

Practically, a low impedance section, half a wavelength long at ω_{s0} , is used as a parallel resonator. From a linear approximation around ω_{s0} the impedance Z_p of the low impedance section can be determined.

$$C_2 = \frac{1}{2} \frac{\pi}{\omega_{s0}} \left[\frac{1}{Z_p} - \frac{Z_p}{R_0^2} \right]. \quad (4)$$

This determines Z_p to 7 Ω . Plotting in a Smith Chart shows that the optimum Z_p will be somewhat lower than given by (4). Reactive parts in the source impedance R_0 might modify the length of the low impedance section.

With a low impedance section of impedance 5.5 Ω and electrical length 170° at ω_{s0} the gain curve shown in Fig. 4 is measured. The measured gain curve is compared with a theoretical gain curve obtained from the concentrated element equivalent.

Point measurements of the double sideband noise figure give noise figures of 1.5-2.0 db.

BENGT T. HENOCHE
Research Institute of National Defence
Stockholm, Sweden

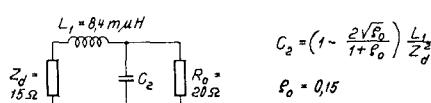


Fig. 3—Low-pass equivalent of the matching circuit.

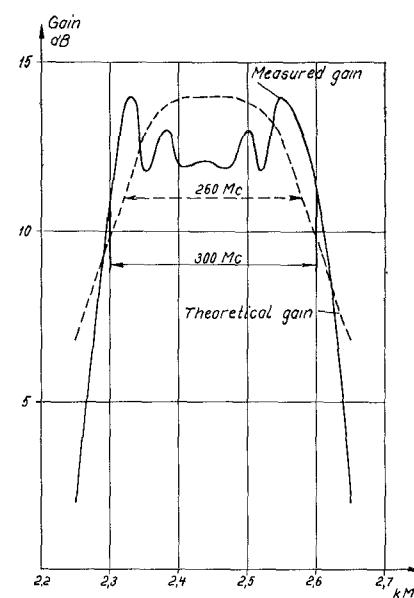


Fig. 4—Double sideband gain as a function of frequency for the double-tuned amplifier.

Phaseshift of Electromagnetic Waves Propagating Through Waveguide Junctions*

This work was activated by the lack of information in literature about the effect of an *H*-plane branch upon electromagnetic waves traveling through the collinear arms of the branch. Most literature about the sub-

* Received March 29, 1963; revised manuscript received April 29, 1963.